ASÍ FUNCIONAN LOS DIODOS LEDs

Texto e ilustraciones José Antonio E. García Álvarez


Contenido:

Google
 





Introducción
Funcionamiento de un diodo 
   semiconductor común
Funcionamiento del diodo LED
Estructura interna de un diodo LED común
Partes de una lámpara LED de alta 
   potencia luminosa
Calentamiento de los diodos LED
> Color y temperatura de color en 
   kelvin (K) de un diodo LED




 

COLOR Y TEMPERATURA DE COLOR EN GRADOS KELVIN (ºK) DE UN DIODO LED

Para obtener directamente luz de diferentes colores, los diodos LED se fabrican con una gran variedad de combinaciones de materiales semiconductores como son, por ejemplo: arseniuro de galio (GaAs), arseniuro de galio y aluminio (GaAlAs), fosfuro de galio (GaP), fosfuro de galio y arsénico (GaAsP), nitruro de galio e indio (GaInN) y otras combinaciones más.



Izquierda.-
Lámpara LED multicolor diseñada para su empleo en la iluminación nocturna del agua de las piscinas. Esta lámpara se compone de múltiples triadas de diodos LEDs de colores primarios (RGB), que cuando se iluminan la mezcla de sus luces se percibe de diferentes colores, según sea la variación de la intensidad luminosa de cada LED en un momento dado. La lámpara que aparece en esta foto funciona con 12 volt (V) de corriente alterna (C.A.) y tiene un consumo de energía eléctrica de 25 watt. La parte frontal posee un diámetro de 16,5 cm y un fondo de 13,5 cm, incluyendo un casquillo normal de rosca Edison (E-27). Derecha.- Fragmento de la parte frontal de la misma lámpara, donde se puede observar la disposición de las triadas de diodos LED, cuando se encuentra apagada.

 











Piscina iluminada de noche con lámparas LED multicolor.

 

Hasta ahora ninguna combinación de materiales semiconductores proporciona directamente luz blanca. Para obtenerla se emplean dos técnicas diferentes: una de ellas emplea una triada de LEDs de colores primarios RGB (Red-Green-Blue / rojo-verde-azul), o lo que es igual, múltiples grupos de tres LEDs que emiten, de forma independiente, esos tres colores que al mezclarse el ojo humano los percibe como luz blanca, o con diferentes tonalidades de colores, cosa que ocurre al variar, de forma independiente, la intensidad luminosa de cada grupo de LED emisor de luz de un mismo color.

Otra técnica utilizada para obtener luz blanca es por medio de un solo LED que normalmente emite luz azul o cercana al ultravioleta. Para obtener luz blanca de ese LED, su chip se recubre con una capa de fósforo que absorbe o filtra la luz azul que éste emite. Cuando esa capa de fósforo es gruesa tiene un color amarillo obscuro (ocre) y en ese caso nuestro sentido de la vista percibe la luz que emite el chip como “cálida” (warm light), equivalente a la de una lámpara halógena. Por el contrario, cuando la capa de fósforo es más delgada, su color es amarillo claro, por lo que filtra menos la componente de luz azul que emite el chip. En ese caso la luz se percibe como “blanca fría” (cool light), similar a la de una lámpara fluorescente tradicional de tubo recto o circular, o una CFL de similares características.

A la luz cálida le corresponde, generalmente, una temperatura de color por debajo de los 3 400 K (kelvin), mientras que a la luz fría o de tonos azulados le corresponde una temperatura de color por encima de los 3 600 K.

Como aclaración y para evitar confusiones, la temperatura de color en grados kelvin (K) no guarda ninguna relación con la sensación de frío o calor que percibe el cuerpo humano al variar la temperatura ambiente, sino que sólo responde a la forma en que el ojo humano percibe los colores, a saber: los tonos azules y violáceos como “fríos”, mientras que los amarillos y rojizos como “cálidos”, de la misma forma que se considera en pintura.

 

 


Cambio de tonalidad de la luz, según varían los kelvin (K) correspondientes a la temperatura de color. En la ilustración podemos observar que hacia la izquierda la luz es más cálida, llegando a alcanzar un tono rojizo a medida que disminuyen los kelvin, mientras que hacia la derecha la luz se hace más fría, llegando a adquirir un tono azulado a medida que aumentan los kelvin.


Por norma general, la intensidad de luz que emiten las lámparas incandescentes, halógenas y de otros tipos de uso común en alumbrado se puede determinar, de forma aproximada, conociendo los watt de consumo eléctrico de cada una. Sin embargo, en el caso de las lámparas LED es más importante conocer, en primer lugar, los lúmenes de flujo luminoso que emite cada una en particular antes que su potencia de consumo eléctrico en watts (W). Por ejemplo, una lámpara LED de 3,5 watt de consumo eléctrico que emite “luz cálida” (warm light), puede tener un flujo luminoso de 170 lúmenes (lm), mientras que la misma lámpara diseñada para emitir “luz fría” (cool light) puede tener un flujo luminoso más intenso, por ejemplo de 210 lúmenes, e iluminar con mayor intensidad.

Esa diferencia se debe a que al ser más gruesa la capa de fósforo que recubre el chip de la primera lámpara para obtener luz cálida, absorbe más componente de luz azul, mientras que en el caso de la segunda, al ser más delgada dicha capa, filtra menos la componente de luz azul. Sin embargo, el consumo de potencia eléctrica en watts es el mismo (3,5 W) para ambas lámparas, a pesar de la diferencia apreciable en lúmenes de flujo luminoso que emite cada una de éstas.

Además de lo recomendable que resulta a la hora de adquirir una lámpara LED de alta potencia luminosa conocer cuál es su flujo luminoso en lúmenes en lugar de los watts de energía eléctrica que consume, es necesario conocer también a cuántos kelvin corresponde la temperatura de color de la luz que emite para poder escoger entre una que emita luz cálida u otra que emita luz fría. Estos datos deben aparecer normalmente impresos en el blíster o empaque de la lámpara cuando la adquirimos en la tienda. No obstante, en algunos casos en lugar de lúmenes lo que aparece reflejada, a modo de comparación, es la equivalencia en watt de consumo que tendría una lámpara halógena con una potencia luminosa similar a la que emite ese LED.

 

Muestra de lámparas LED con diferentes tipos de casquillos y conectores:

A.- Casquillo de rosca Edison (E-27).
B.- Casquillo de rosca candelabro (E-14). C.- Conector GU10.
[Estas tres primeras lámparas se fabrican para trabajar con 110 volt, o con 220 volt de corriente alterna (C.A.)].
D.- Conector GU5.3, para trabajar con 12 volt de corriente alterna.

 

Al igual que las halógenas, las lámparas LED de alta potencia luminosa se fabrican con casquillos de rosca Edison (E-27), rosca candelabro (E-14), o con otros tipos de conectores, tanto para trabajar con 12, 110 ó 220 volt (V) de corriente alterna (C.A.).




TEMAS RELACIONADOS

 

Vocabulario Español – Inglés / Inglés – Español acerca de este tema como ayuda a traductores


Favor de valuar este tema

 Atrás

Inicio del tema

Ir al índice

 
     
     
       
     
       


| Página Inicio | Presentación | Aviso Legal | Mapa del Sitio | Prensa | FAQs | Contactar |  

www.asifunciona.com

                Resolución 800 x 600 píxeles

  Última actualización: septiembre de 2015