ASÍ FUNCIONAN LAS LÁMPARAS FLUORESCENTES

Texto e ilustraciones José Antonio E. García Álvarez




Google
 


Contenido:

 

Introducción
Introducción... (Continuación)
Emisión de luz fluorescente
> Funcionamiento de las lámparas 
   fluorescentes

Ventajas de las lámparas fluorescentes
Breve historia de las lámparas 
   fluorescentes



 

FUNCIONAMIENTO DE LAS LÁMPARAS FLUORESCENTES


Las lámparas fluorescentes funcionan de la siguiente forma:



Clic aquí para ver animación


  1. Cuando activamos el interruptor de una lámpara de luz fluorescente que se encuentra conectada a la red doméstica de corriente alterna, los electrones comienzan a fluir por todo el circuito eléctrico, incluyendo el circuito en derivación donde se encuentra conectado el cebador (estárter).

  2. El flujo de electrones de la corriente eléctrica al llegar al cebador produce un arco o chispa entre los dos electrodos situados en su interior, lo que provoca que el gas neón (Ne) contenido también dentro de la cápsula de cristal se encienda. El calor que produce el gas neón encendido hace que la plaquita bimetálica que forma parte de uno de los dos electrodos del cebador se curve y cierre un contacto eléctrico dispuesto entre ambos electrodos.

  3. Cuando el contacto del cebador está cerrado se establece el flujo de corriente eléctrica necesario para que los filamentos se enciendan, a la vez que se apaga el gas neón.

  4. Los filamentos de tungsteno encendidos provocan la emisión de electrones por caldeo o calentamiento y la ionización del gas argón (Ar) contenido dentro del tubo. Esto crea las condiciones previas para que, posteriormente, se establezca un puente de plasma conductor de la corriente eléctrica por el interior del tubo, entre un filamento y otro.

  5. La plaquita bimetálica del cebador, al dejar de recibir el calor que le proporcionaba el gas neón encendido, se enfría y abre el contacto dispuesto entre los dos electrodos. De esa forma el flujo de corriente a través del circuito en derivación se interrumpe, provocando dos acciones simultáneas:

    a. Los filamentos de la lámpara se apagan cuando deja de pasar la corriente eléctrica por el circuito en derivación.

    b. El campo electromagnético que crea en el enrollado del balasto la corriente eléctrica que también fluye por el circuito donde éste se encuentra conectado, se interrumpe bruscamente. Esto provoca que en el propio enrollado se genere una fuerza contraelectromotriz, cuya energía se descarga dentro del tubo de la lámpara, en forma de arco eléctrico. Este arco salta desde un extremo a otro del tubo valiéndose de los filamentos, que una vez apagados se convierten en electrodos de la lámpara.

  6. Bajo estas nuevas condiciones, la corriente de electrones, que en un inicio fluía a través del circuito en derivación de la lámpara donde se encuentra conectado el cebador, comienza hacerlo ahora atravesando interiormente el tubo de un extremo a otro, valiéndose de los dos electrodos.

  7. La fuerte corriente que fluye por dentro del tubo provoca que los electrones comiencen a chocar con los átomos del gas argón, aumentando la cantidad de iones y de electrones libres. Como resultado se crea un puente de plasma, es decir, un gas compuesto por una gran cantidad de iones y de electrones libres, que permite que estos se muevan de un extremo a otro del tubo.

  8. Esos electrones libres comienzan a chocar con una parte de los átomos de mercurio (Hg) contenidos también dentro del tubo, que han pasado del estado líquido al gaseoso debido a la energía que liberan dichos electrones dentro del tubo. Los choques de los electrones libres contra los átomos de mercurio excitan a sus electrones haciendo que liberen fotones de luz ultravioleta.

  9. Los fotones de luz ultravioleta, invisibles para el ojo humano, impactan a continuación contra la capa de fósforo (P) que recubre la pared interior del tubo fluorescente. El impacto excita los electrones de los átomos fósforo (P), los que emiten, a su vez,  fotones de luz visible, que hacen que el tubo se ilumine con una luz fluorescente blanca.

  10. El impacto de los electrones que se mueven por el puente de plasma contra los dos electrodos situados dentro del tubo, hace que estos se mantengan calientes (a pesar de que los filamentos se encuentran ya apagados). Mantener caliente esos dos electrodos se hace necesario para que la emisión de electrones continúe y el puente de plasma no se extinga. De esa forma, tanto el ciclo de excitación de los átomos de vapor de mercurio como el de los átomos de fósforo dentro del tubo continúa, hasta tanto activemos de nuevo el interruptor que apaga la lámpara y deje de circular la corriente eléctrica por el circuito.



Esquema del circuito eléctrico de una lámpara fluorescente de 20 watt de potencia: 1. Entrada de la. corriente alterna. 2. Cebador. 3. Filamentos de tungsteno. 4.Tubo de descarga de luz fluorescente.
5. Balasto o inductancia. 6. Capacitor o filtro.

 

 Atrás

Inicio del tema

Continuar

     
     
       
     
       


| Página Inicio | Presentación | Aviso Legal | Mapa del Sitio | Prensa | FAQs | Contactar |  

www.asifunciona.com

                Resolución 800 x 600 píxeles

 Última actualización: marzo de 2012